3.703 \(\int \frac{1}{(a+b \sin (e+f x)) (c+d \sin (e+f x))} \, dx\)

Optimal. Leaf size=117 \[ \frac{2 b \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (e+f x)\right )+b}{\sqrt{a^2-b^2}}\right )}{f \sqrt{a^2-b^2} (b c-a d)}-\frac{2 d \tan ^{-1}\left (\frac{c \tan \left (\frac{1}{2} (e+f x)\right )+d}{\sqrt{c^2-d^2}}\right )}{f \sqrt{c^2-d^2} (b c-a d)} \]

[Out]

(2*b*ArcTan[(b + a*Tan[(e + f*x)/2])/Sqrt[a^2 - b^2]])/(Sqrt[a^2 - b^2]*(b*c - a*d)*f) - (2*d*ArcTan[(d + c*Ta
n[(e + f*x)/2])/Sqrt[c^2 - d^2]])/((b*c - a*d)*Sqrt[c^2 - d^2]*f)

________________________________________________________________________________________

Rubi [A]  time = 0.153368, antiderivative size = 117, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 4, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.16, Rules used = {2747, 2660, 618, 204} \[ \frac{2 b \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (e+f x)\right )+b}{\sqrt{a^2-b^2}}\right )}{f \sqrt{a^2-b^2} (b c-a d)}-\frac{2 d \tan ^{-1}\left (\frac{c \tan \left (\frac{1}{2} (e+f x)\right )+d}{\sqrt{c^2-d^2}}\right )}{f \sqrt{c^2-d^2} (b c-a d)} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + b*Sin[e + f*x])*(c + d*Sin[e + f*x])),x]

[Out]

(2*b*ArcTan[(b + a*Tan[(e + f*x)/2])/Sqrt[a^2 - b^2]])/(Sqrt[a^2 - b^2]*(b*c - a*d)*f) - (2*d*ArcTan[(d + c*Ta
n[(e + f*x)/2])/Sqrt[c^2 - d^2]])/((b*c - a*d)*Sqrt[c^2 - d^2]*f)

Rule 2747

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[b/(
b*c - a*d), Int[1/(a + b*Sin[e + f*x]), x], x] - Dist[d/(b*c - a*d), Int[1/(c + d*Sin[e + f*x]), x], x] /; Fre
eQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]

Rule 2660

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[(2*e)/d, Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{(a+b \sin (e+f x)) (c+d \sin (e+f x))} \, dx &=\frac{b \int \frac{1}{a+b \sin (e+f x)} \, dx}{b c-a d}-\frac{d \int \frac{1}{c+d \sin (e+f x)} \, dx}{b c-a d}\\ &=\frac{(2 b) \operatorname{Subst}\left (\int \frac{1}{a+2 b x+a x^2} \, dx,x,\tan \left (\frac{1}{2} (e+f x)\right )\right )}{(b c-a d) f}-\frac{(2 d) \operatorname{Subst}\left (\int \frac{1}{c+2 d x+c x^2} \, dx,x,\tan \left (\frac{1}{2} (e+f x)\right )\right )}{(b c-a d) f}\\ &=-\frac{(4 b) \operatorname{Subst}\left (\int \frac{1}{-4 \left (a^2-b^2\right )-x^2} \, dx,x,2 b+2 a \tan \left (\frac{1}{2} (e+f x)\right )\right )}{(b c-a d) f}+\frac{(4 d) \operatorname{Subst}\left (\int \frac{1}{-4 \left (c^2-d^2\right )-x^2} \, dx,x,2 d+2 c \tan \left (\frac{1}{2} (e+f x)\right )\right )}{(b c-a d) f}\\ &=\frac{2 b \tan ^{-1}\left (\frac{b+a \tan \left (\frac{1}{2} (e+f x)\right )}{\sqrt{a^2-b^2}}\right )}{\sqrt{a^2-b^2} (b c-a d) f}-\frac{2 d \tan ^{-1}\left (\frac{d+c \tan \left (\frac{1}{2} (e+f x)\right )}{\sqrt{c^2-d^2}}\right )}{(b c-a d) \sqrt{c^2-d^2} f}\\ \end{align*}

Mathematica [A]  time = 0.165576, size = 104, normalized size = 0.89 \[ \frac{\frac{2 b \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (e+f x)\right )+b}{\sqrt{a^2-b^2}}\right )}{\sqrt{a^2-b^2}}-\frac{2 d \tan ^{-1}\left (\frac{c \tan \left (\frac{1}{2} (e+f x)\right )+d}{\sqrt{c^2-d^2}}\right )}{\sqrt{c^2-d^2}}}{b c f-a d f} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + b*Sin[e + f*x])*(c + d*Sin[e + f*x])),x]

[Out]

((2*b*ArcTan[(b + a*Tan[(e + f*x)/2])/Sqrt[a^2 - b^2]])/Sqrt[a^2 - b^2] - (2*d*ArcTan[(d + c*Tan[(e + f*x)/2])
/Sqrt[c^2 - d^2]])/Sqrt[c^2 - d^2])/(b*c*f - a*d*f)

________________________________________________________________________________________

Maple [A]  time = 0.09, size = 116, normalized size = 1. \begin{align*} 2\,{\frac{d}{f \left ( da-cb \right ) \sqrt{{c}^{2}-{d}^{2}}}\arctan \left ( 1/2\,{\frac{2\,c\tan \left ( 1/2\,fx+e/2 \right ) +2\,d}{\sqrt{{c}^{2}-{d}^{2}}}} \right ) }-2\,{\frac{b}{f \left ( da-cb \right ) \sqrt{{a}^{2}-{b}^{2}}}\arctan \left ( 1/2\,{\frac{2\,a\tan \left ( 1/2\,fx+e/2 \right ) +2\,b}{\sqrt{{a}^{2}-{b}^{2}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*sin(f*x+e))/(c+d*sin(f*x+e)),x)

[Out]

2/f/(a*d-b*c)*d/(c^2-d^2)^(1/2)*arctan(1/2*(2*c*tan(1/2*f*x+1/2*e)+2*d)/(c^2-d^2)^(1/2))-2/f*b/(a*d-b*c)/(a^2-
b^2)^(1/2)*arctan(1/2*(2*a*tan(1/2*f*x+1/2*e)+2*b)/(a^2-b^2)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sin(f*x+e))/(c+d*sin(f*x+e)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 10.3949, size = 2238, normalized size = 19.13 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sin(f*x+e))/(c+d*sin(f*x+e)),x, algorithm="fricas")

[Out]

[1/2*((a^2 - b^2)*sqrt(-c^2 + d^2)*d*log(((2*c^2 - d^2)*cos(f*x + e)^2 - 2*c*d*sin(f*x + e) - c^2 - d^2 + 2*(c
*cos(f*x + e)*sin(f*x + e) + d*cos(f*x + e))*sqrt(-c^2 + d^2))/(d^2*cos(f*x + e)^2 - 2*c*d*sin(f*x + e) - c^2
- d^2)) + (b*c^2 - b*d^2)*sqrt(-a^2 + b^2)*log(-((2*a^2 - b^2)*cos(f*x + e)^2 - 2*a*b*sin(f*x + e) - a^2 - b^2
 - 2*(a*cos(f*x + e)*sin(f*x + e) + b*cos(f*x + e))*sqrt(-a^2 + b^2))/(b^2*cos(f*x + e)^2 - 2*a*b*sin(f*x + e)
 - a^2 - b^2)))/(((a^2*b - b^3)*c^3 - (a^3 - a*b^2)*c^2*d - (a^2*b - b^3)*c*d^2 + (a^3 - a*b^2)*d^3)*f), 1/2*(
2*(a^2 - b^2)*sqrt(c^2 - d^2)*d*arctan(-(c*sin(f*x + e) + d)/(sqrt(c^2 - d^2)*cos(f*x + e))) + (b*c^2 - b*d^2)
*sqrt(-a^2 + b^2)*log(-((2*a^2 - b^2)*cos(f*x + e)^2 - 2*a*b*sin(f*x + e) - a^2 - b^2 - 2*(a*cos(f*x + e)*sin(
f*x + e) + b*cos(f*x + e))*sqrt(-a^2 + b^2))/(b^2*cos(f*x + e)^2 - 2*a*b*sin(f*x + e) - a^2 - b^2)))/(((a^2*b
- b^3)*c^3 - (a^3 - a*b^2)*c^2*d - (a^2*b - b^3)*c*d^2 + (a^3 - a*b^2)*d^3)*f), 1/2*((a^2 - b^2)*sqrt(-c^2 + d
^2)*d*log(((2*c^2 - d^2)*cos(f*x + e)^2 - 2*c*d*sin(f*x + e) - c^2 - d^2 + 2*(c*cos(f*x + e)*sin(f*x + e) + d*
cos(f*x + e))*sqrt(-c^2 + d^2))/(d^2*cos(f*x + e)^2 - 2*c*d*sin(f*x + e) - c^2 - d^2)) - 2*(b*c^2 - b*d^2)*sqr
t(a^2 - b^2)*arctan(-(a*sin(f*x + e) + b)/(sqrt(a^2 - b^2)*cos(f*x + e))))/(((a^2*b - b^3)*c^3 - (a^3 - a*b^2)
*c^2*d - (a^2*b - b^3)*c*d^2 + (a^3 - a*b^2)*d^3)*f), ((a^2 - b^2)*sqrt(c^2 - d^2)*d*arctan(-(c*sin(f*x + e) +
 d)/(sqrt(c^2 - d^2)*cos(f*x + e))) - (b*c^2 - b*d^2)*sqrt(a^2 - b^2)*arctan(-(a*sin(f*x + e) + b)/(sqrt(a^2 -
 b^2)*cos(f*x + e))))/(((a^2*b - b^3)*c^3 - (a^3 - a*b^2)*c^2*d - (a^2*b - b^3)*c*d^2 + (a^3 - a*b^2)*d^3)*f)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sin(f*x+e))/(c+d*sin(f*x+e)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \mathit{sage}_{0} x \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sin(f*x+e))/(c+d*sin(f*x+e)),x, algorithm="giac")

[Out]

sage0*x